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Abstract

Yet another introduction to Constructive Homological Algebra. Experience
shows this domain of Mathematics is rarely well understood. It requires a reasonable
understanding of two subjects, functional programming and elementary homological
algebra. These subjects are not difficult but they are relatively far from each other.
This n-th introduction tries to achieve the following goal: just a few simple claims
in functional programming and in homological algebra are stated and have to be ad-
mitted to understand our general organization. A simple Kenzo calculation is used
to proceed, hoping this text could be useful for both categories of mathematicians:
the computer scientists and the topologists.

1 Introduction

It is a little bewildering for a topologist to be invited at a meeting entitled “Des
Nombres et des Mondes” (About Numbers and Worlds); how would it be possible
to connect this ambitious title and the relatively esoteric world of topology? But
after all, this can lead quickly to the heart of our subject.

The Euclid algorithm is well known. An automatic process can be applied
to compute, given two positive numbers a and b, their gcd. It is a beginner
exercise often given in programming courses. A simple program can, given the
input (30, 45), return the output 15, the gcd of 30 and 45; the same program
can be used for every input. In modern language, the specification of the Euclid
algorithm E is:

N2
∗ 3 (a, b)

E7−→ c = gcd(a, b) (1)

∗Francis.Sergeraert@ujf-grenoble.fr
1This text is a variant of the oral talk given at the nice meeting “Des Nombres et des Mondes”

organized at La Rochelle in June 2011, in honour of Guy Wallet. I use this opportunity to express
my gratitude to Guy. Working at Poitiers in 72-82 in his neighbourhood was one of the best
experiences of my scientific life, in particular when he convinced me of the interest of the non-
standard analysis. With a consequence: this made obvious that the usual mathematical starting
axioms are not necessarily fixed once for all; certainly this played a role in my permanent interest
now for constructive mathematics. To support this idea, let us observe the recent studies around
constructive non-standard analysis[13, 14].
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Euclid can be here thought of as a designer of algorithm, long before the invention
of computers.

A more recent example along the same line. Jean-Pierre Serre obtained in 1954
a Fields Medal; he was rewarded in particular for this result:

(7 ((1 2 3) (0 2 3) (0 1 3) (0 1 2)))
S7−→ (2) (2)

What is the nature of the output (2) with respect to the complicated list given as
input?

Serre obtained several homotopy groups of spheres, in particular π7(S2) = Z/2.
This means the functional space C(S7, S2) made of the continuous maps between
the 7-sphere and the 2-sphere has two connected components. Also this set has a
natural group structure which therefore necessarily is isomorphic to Z/2.

In the correspondance
S7−→ above, the first 7 codes the index 7 of the functor

π7. Any abelian group G of finite type admits a canonical expression with respect
to its divisors G = Z/d1 ⊕ · · · ⊕ Z/dk where every divisor di divides the next
one, the last divisors being possibly null. For example the canonical writing of
Z2 ⊕ Z/4 ⊕ Z/6 is Z/2 ⊕ Z/12 ⊕ Z/0 ⊕ Z/0. Such a group can be coded by an
integer list, (2 12 0 0) for our example. So that the final (2) in the correspondance
S7−→ represents the value Z/2 of the Serre result.

The reader guesses the list of lists ((1 2 3) (0 2 3) (0 1 3) (0 1 2)) should represent
the 2-sphere S2, the last missing ingredient of the formula π7(S2) = Z/2. Why?
The standard 2-sphere is homeomorphic to the boundary of a tetrahedron spanned
by the vertices 0 . . 3, and our list of lists is the list of the maximal simplices of this
boundary. The 2-sphere is combinatorially represented as a simplicial complex.

S2 = ≈ •

•

•

•

0

1

2

3

(3)

Many topological spaces have analogous combinatorial descriptions, and the
reader could believe Serre produced an algorithm:

N× Top
1
3 (n,X)

S7−→ πn(X) ∈ Ab

where Top1 is an appropriate2 category of combinatorial topological spaces and
Ab the category of abelian groups. Not at all.

The methods designed by Serre have a large scope, but fail to be such an algo-
rithm. For example, in the particular case of π6(S2), Serre was able to determine

2In particular X must be simply connected, otherwise the problem becomes totally different.
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this group has 12 elements, but did not succeed in choosing between Z/12 and
Z/2 ⊕ Z/6; the point is that this ambiguity could not be solved by some possi-
ble computation; no algorithm could then be deduced of Serre’s beautiful work to
decide between both known possible values. Barratt and Paechter [1] proved a
little later in fact this group contains an element of order 4 and therefore finally
π6(S2) = Z/12, but this was a consequence of a new theoretical study on another
subject, the homotopy groups of Stiefel manifolds.

This little story is typical of the general style of “standard” algebraic topology
when the value of some invariant, typically a homology or a homotopy group, is
looked for. The countless exact and spectral sequences which are available allow a
topologist to determine many invariants of this sort, but they are rarely algorithms
with a general scope. Most often they did not solve the extension problems; for
example, using his famous spectral sequence, Serre produced an exact sequence:

0← Z/6← π6(S2)← Z/2← 0 (4)

without being able to solve the extension problem; see [21, Section 3.3.2] for a
detailed description of the process generating this obstacle. It is often believed
the Bockstein spectral sequence [3] can solve these extension problems, but the
problem is then in fact transferred into another one, determining the higher differ-
entials of this spectral sequence. Most often no known algorithm can give them;
an example is given here later.

Yet an algorithm was quickly given by Edgar Brown [4] to compute the ho-
motopy groups of the finite simply connected simplicial complexes. Based on a
combinatorial and very interesting study of the Postnikov towers, Edgar Brown
also honestly warned the reader:

It must be emphasized that although the procedures developed for solving

these problems are finite, they are much too complicated to be considered

practical.

an appreciation which unfortunately remains valid today, even with the help of
the most powerful computers now available. Note also Edgar Brown did not use
spectral sequences: he knew they cannot be used to produce algorithms.

In the eighties, several methods were designed to organize basic homological
algebra in such a way on the contrary the standard exact and spectral sequences
become algorithmical tools. The constructive point of view led this author and
his collaborators to a simple solution, the only one so far used to produce con-
crete computer programs. A simple computer example, the computation of the
homology group H5(Ω3S3P 2R) is used here to explain the general organization of
this solution, logically called constructive homological algebra. See for other pre-
sentations [22, 18, 19, 20, 2], where the other available methods, all of them very
interesting, are also referenced and commented.
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2 Constructive Homological Algebra.

We recall in this section the general organization of Constructive Homological
Algebra. With respect to previous texts, consider “Constructive” and “Effective”
are perfect synonymous words. From a theoretical point of view, the matter at issue
is the following: many “methods” in Algebraic Topology are presented as methods
of computation, with a rather ambiguous status: because they often involve infinite
objects, in fact they are not algorithms. The so-called Constructive Homological
Algebra overcomes this essential obstacle by a simple strict organization needing
other tools.

Two main tools are used. The first one is purely mathematical; the Basic
Perturbation Lemma [5] is an elementary process often allowing its user to ap-
propriately connect a chain complex3 defining homology groups to another chain
complex computing the same homology groups; most often the first one is not of fi-
nite type, or has a giant size forbidding its implementation on a concrete computer,
even a very powerful one.

The second tool comes from Computer Science: Functional Programming does
finally allow a user to implement these infinite or giant chain complexes on a
computer, but in a functional way. No algorithm can compute the homology
groups of a chain complex so implemented. Fortunately, the basic perturbation
lemma is available and can often be used to connect this strange type of chain
complex with an ordinary chain complex of finite type where on the contrary
the homology groups can be elementarily computed. Functional programming is
important in computer science, it goes back to Church and his brilliant invention,
the λ-calculus [7]; a difficult problem for the scope of identifiers is met here for the
practical programming languages, elegantly solved now thanks to the wonderful
notion of lexical closure. For instructive explanations, see [23], in particular for
the essential obstacle when trying to use such a technique in Java or C++.

Using these tools, the general finiteness results obtained long ago by Serre [15]
are easily transformed into computability results. The Kenzo program [8] proves
this is not only a theoretical result: the algorithms so defined can be concretely
implemented and used.

For example, if you are interested4 by the homology group H5(Ω3Σ3P 2R), using
the Kenzo program, you could proceed as follows. First, the real projective plane
P 2R is constructed:

3A chain complex is an algebraic object made of abelian groups called chain groups connected
by differentials satisfying simple properties; a chain complex is an intermediate algebraic object
between a topological space and the homology groups of this space. The chain complex associated
to some object defines the homology groups of this object.

4We like this example, because in principle the result should be deduced from [12]. Two
excellent topologists were questionned about this group; the first one successively proposed two
different results, both incorrect; the second one observed he was not able to apply the Bockstein
spectral sequence to this particular case, necessary to obtain the final result. At least they tried
to compute this group, sincere thanks!
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf P2R (r-proj-space 3)) z
[K1 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Lisp prompt is the greater character ‘>’ and the user then enters a Lisp
statement to be evaluated, here the statement (setf P2R (r-proj-space 3)), 3 be-
cause it is the first dimension without any simplex, a more convenient convention
for the general case. On this display, the end of the Lisp statement is marked
by the maltese character ‘z’, in fact not visible on the user’s screen; the end of
the Lisp statement is automatically detected by the Lisp interpreter, which then
evaluates the given statement and returns the result of the evaluation, here the
Kenzo object #1 (K1), which happens to be a simplicial set5. Only a simple ex-
ternal reference to this object is displayed, the internal object, a package of rather
sophisticated algorithms, cannot be properly displayed. Also the simplicial set so
constructed is assigned to the symbol P2R for future reference.

Then the suspension6 functor Σ is applied three times to our simplicial set P2R.
The result is again a simplicial set assigned to the symbol S3P2R:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CL-USER(2): (setf S3P2R (suspension P2R 3)) z
[K16 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The result is the Kenzo object #16, a simplicial set; the Kenzo program had
to construct several other intermediate invisible objects numbered from 2 to 15.
The loop-space7 functor is in turn applied three times:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CL-USER(3): (setf O3S3P2R (loop-space S3P2R 3)) z
[K45 Simplicial-Group]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Kan model for the loop space functor, see [11], constructs a simplicial
group. Finally the desired homology group can be calculated:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CL-USER(4): (homology O3S3P2R 5) z
Computing boundary-matrix in dimension 5.
Rank of the source-module : 23.
Computing boundary-matrix in dimension 6.
Rank of the source-module : 53.
Homology in dimension 5 :
Component Z/2Z
Component Z/2Z
Component Z/2Z
Component Z/2Z
Component Z/2Z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5Roughly analogous to a simplicial complex, but with incidence relations between simplices
more sophisticated.

6If X is a topological space with a base point ∗, the suspension ΣX of X is the quotient
(X × I)/((X × 0) ∪ (X × 1) ∪ (∗ × I)); for example ΣSn = Sn+1.

7If X is a topological space with a base point ∗, the loop space ΩX is the functional space of
the continuous functions γ : I → X satisfying γ(0) = γ(1) = ∗, with the usual topology.
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which implies H5(Ω3Σ3P 2R) = (Z/2)5.

3 Object with Effective Homology.

How the Kenzo program successfully processes the computation of the previous
section? The Kenzo program implements the key notions of reduction, of (ho-
mological) equivalence and of object with effective homology. The definitions are
recalled here.

Definition 1 — A reduction ρ = (f, g, h) : Ĉ∗ ⇒⇒ C∗ is a diagram:

ρ = Ĉ∗ C∗
f

g
h (5)

where:

• The nodes Ĉ∗ and C∗ are chain complexes, the first one Ĉ∗ being the big one,
the second one C∗ the small one;

• The arrows f and g are two chain complex morphisms;

• The self-arrow h is a homotopy operator (degree +1);

• The following relations are satisfied:

fg = idC∗

gf + dh+ hd = idĈ∗
fh = 0
hg = 0
hh = 0

This reduction describes the big chain complex Ĉ∗ as the direct sum of the small
one C∗ ∼= g(C∗) and an acyclic complement ker(f). This implies the homological

natures of both complexes C∗ and Ĉ∗ are canonically isomorphic.

Definition 2 — An equivalence ε : C∗ ⇐⇐⇒⇒ C ′∗ between two chain complexes is

an extra chain complex Ĉ∗ and a pair of reductions ρ = (f, g, h) : Ĉ∗ ⇒⇒ C∗ and

ρ′ = (f ′, g′, h′) : Ĉ∗ ⇒⇒ C ′∗.

Definition 3 — An object with effective homology is a 4-tuple (X,C∗X,EC∗, ε)
where:

• X is some object studied from a homological point of view, thanks to the
canonical chain complex C∗X associated to it in the current context: simpli-
cial homology, homology of groups, Hochschild homology, cyclic homology. . .
This chain complex defines the homology groups of X with respect to some
homological theory, but most often, the computation of these groups is out
of scope if only this information is available.
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• EC∗ is a chain complex of finite type whose homology is therefore elemen-
tarily computable (E for effective);

• ε is an equivalence ε : C∗X ⇐⇐⇒⇒ EC∗

The equivalence ε defines in particular an ordinary homology equivalence be-
tween C∗X and EC∗; a canonical isomorphism is defined H∗X := H∗C∗X ∼=
H∗EC∗: the homology groups of X are finally computable, thanks to the extra
information given by EC∗ and ε.

Much more importantly, this data type is stable, which is explained now.

Meta-Theorem 4 — Let χ be a constructor:

χ : (X1, . . . , Xn) 7→ X

producing an object X from various objects X1, . . . , Xn. Then, under appropriate
conditions, an algorithm χEH :

χEH : (XEH
1 , . . . , XEH

n ) 7→ XEH

can be written down. This algorithm χEH is called a version with effective homol-
ogy of the constructor χ.

Each input object XEH
i is assumed to be an object with effective homology

XEH
i = (Xi, C∗Xi, ECi,∗, εi) and the algorithm χEH produces an object XEH =

(X,C∗X,EC∗, ε), also an object with effective homology.

So that, if interested in the homology groups of X, you can use the effective
chain complex EC∗ to elementarily compute them. More important, if you intend
to use the output object X as input for another constructor χ′, the same process
can be applied in turn to χ′EH and XEH ; in particular, iterations become easy.

4 Object with Effective Homology in Kenzo.

The Kenzo program is written in the programming language Common-Lisp. Let
us try to understand how the theoretical notions quickly explained in the previous
section look like in the Kenzo environment. We reexamine the objects produced
by the short Kenzo session of Section 2.

The final space O3S3P2R = Ω3S3P 2R was the Kenzo object #45, a simplicial
group:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> O3S3P2R z
[K45 Simplicial-Group]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Lisp statement asking for H5(Ω3S3P 2R) generated a silent work in the
Kenzo program, producing a version with effective homology of our loop space.
We can ask for this effective homology:
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CL-USER(9): (efhm O3S3P2R) z
[K431 Equivalence K45 <= K421 => K417]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Understand that efhm = Effective Homology. The equivalence, the Kenzo ob-
ject #431, is an equivalence between K45 and K417 through the auxiliary chain
complex K421. Initially, the object K45 was our space O3S3P2R, but thanks to the
powerful object oriented programming available in Common Lisp, a simplicial set in
general, a simplicial group in particular, implicitly contains8 the associated chain
complex defining its homology groups; this is the reason why the simplicial set and
the associated chain complex are located through the same reference.

With respect to Definition 3, the components (X6, C∗X6, EC6,∗, ε6) of the ver-
sion with effective homology of our space O3S3P2R are:

(X6, C∗X6, EC6,∗, ε6) = (K45, K45, K417, K431) (6)

for, as explained above, the object K45 contains simultaneously the simplicial group
and the associated chain complex.

Why this notation X6? Our program successively constructed:

X0 = P 2R X1 = ΣP 2R X2 = Σ2P 2R X3 = Σ3P 2R
X4 = ΩΣ3P 2R X5 = Ω2Σ3P 2R X6 = Ω3Σ3P 2R (7)

each one as an object with effective homology. Let us examine for example the
object X5 and its effective homology:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf O2S3P2R (loop-space S3P2R 2)) z
[K33 Simplicial-Group]
CL-USER(6): (efhm O2S3P2R) z
[K383 Equivalence K33 <= K373 => K369]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kenzo knows how to locate this object already constructed, it is the object
#33 and you understand its effective homology is:

(X5, C∗X5, EC5,∗, ε5) = (K33, K33, K369, K383) (8)

The loop space functor Ω had been applied to X5 = O2S3P2R producing X6 =
ΩX5 = O3S3P2R and, more important, because of Meta-Theorem 4 applied to the
constructor Ω, a version with effective homology ΩEH of this functor has been used
to produce a version with effective homology of X6:

(X5, C∗X5, EC5,∗, ε5) 7−→ (X6, C∗X6, EC6,∗, ε6)

(K33, K33, K369, K383)
ΩEH

7−→ (K45, K45, K417, K431)
(9)

8More precisely, following the right point of view of Eilenberg and MacLane [9], a chain
complex can sometimes be endowed with an additional structure defining a simplicial set. In other
words, Eilenberg and MacLane had already understood in 1950 what object oriented programming
is.
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The chain complexes K33 = C∗X5 and K45 = C∗X6 are “terribly” not of fi-
nite type: in K45, a chain group is the free Z-module generated by the elements
of the free non-commutative group generated by the elements of another free
non-commutative group in turn generated by the elements of another free non-
commutative group of finite type, text carefully checked by the author. Kan in his
landmark article [11] probably did not imagine his hyper-giant theoretical model
for iterated loop spaces could some day be concretely and usefully installed on a
computer; no problem to do it with the functional languages now available.

Unfortunately, an avatar of the incompleteness theorems of Gödel, Turing,
Church and Post excludes some algorithm can compute the homology groups for
example of K45 alone available in your computer environment.

On the contrary the chain complexes K369 and K417 are of finite type and their
homology groups can be elementarily computed. For example, because of the con-
nection K431 between K45 and K417, the desired homology group H5(Ω3Σ3P

2R) =
H5(K45) is canonically isomorphic to H5(K417); and the chain complex K417 is
made of free Z-modules of finite type of rank 10, 23 and 53 in degrees 4, 5 and 6.
The Smith reduction can be applied to the 10×23 and 23×53 boundary matrices,
the homology group H5 being a direct consequence.

To explain the heart of the constructive process, let us repeat the critical
construction step:

(K33, K33, K369, K383)
ΩEH

7−→ (K45, K45, K417, K431) (10)

In this diagram, you can deduce K45 from K33, easy in functional programming,
but you definitively cannot deduce K417 from K45 and you cannot deduce K417

from K369 either. The whole information given in the object (K33, K33, K369, K383)
is necessary to be able to construct K417. The same for K431, necessary also if you
intend to use in turn X6 = Ω3Σ3P 2R for another construction.

In the next diagram, understand each arrow means the source of the arrow is
in particular necessary to construct its target.

(X5 C∗X5 EC∗,5 ε5) XEH
5

(X6 C∗X6 EC∗,6 ε6) XEH
6

ΩEHΩ

=

=

(11)

Note also some redundancy, just to help reading and understanding: the simplicial
set Xi defines the associated chain complex C∗Xi; the equivalence εi contains in
particular both equivalent chain complexes C∗Xi and EC∗,i connected by this
equivalence.

Analogous comments are valid for the connections between XEH
0 and XEH

1 ,
XEH

1 and XEH
2 , . . . , XEH

4 and XEH
5 .
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5 The starting point.

5.1 Trivial starting point.

The previous section does not explain the nature of the starting point: how the
Kenzo program determines the necessary version with effective homology XEH

0 =
(X0, C∗X0, EH∗,0, ε0) of the initial space, the real projective plane X0 = P 2?

The reader understands the very nature of constructive algebraic topology is
recursive, but any recursion must have a starting point. A particular study must
always be done for the starting point.

Most often, the starting point takes place in a particular situation where the
context is simple or even trivial. It is so in the unique example so far considered.
The standard simplicial model for the real projective plane P 2R is very simple:
only one vertex s0, one edge s1, both ends of which are identified to s0, producing
a circle, and one “triangle” s2 attached to s1 by an attaching map of degree 2:
∂s2 → s1. The associated chain complex is the following:

0← (C0 = Z)
0←− (C1 = Z)

×2←− (C2 = Z)← 0 (12)

For such a very simple chain complex of finite type, the trivial effective homology
can be chosen: XEH

0 = (X0, C∗X0, (EC∗,0 = C∗X0), (ε0 = id)). A trivial reduction
ρ = (f, g, h) : C∗ ⇒⇒ C∗ is one where both chain complexes are the same C∗ and
f = g = idC∗ , and h = 0; see Definition 1. A trivial equivalence is made of two
trivial reductions C∗ ⇐⇐ C∗ ⇒⇒ C∗.

The Kenzo program knows our initial space X0 can be so processed:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (efhm P2R) z
[K9 Equivalence K1 <= K1 => K1]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We can question Kenzo how this equivalence was constructed:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (orgn (efhm P2R))
(TRIVIAL-EQUIVALENCE [K1 Simplicial-Set])
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kenzo answers the origin (orgn) of our equivalence is simply the trivial equivalence
of our simplicial set P 2R, more precisely of the underlying chain complex.

This situation of a trivial starting point is very frequent.

5.2 Non-trivial starting point.

In other cases, a real preliminary and particular study must be undertaken to
construct the starting point. A typical example of this sort is for the effective
homology of an Eilenberg-MacLane space K(π, n). Here the group π is an abelian
group of finite type and n is a positive integer. It is a relatively esoteric object
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absolutely essential in the computation of homotopy groups of a space X via its
Postnikov tower, see [4].

The recursive process uses here the classifying space constructor usually de-
noted by B for base space: it is the base space of some universal fibration. The
recursive process is defined by the formula K(π, n) := B(K(π, n − 1)) and the
starting point is K(π, 1). The constructor B does admit a version with effective
homology BEH and there remains to find the effective homology of K(π, 1).

This was implicitly done by Eilenberg and MacLane in Sections 14 and 15
of [10]. The previous paper [9] of the same authors is the first example of a text
in fact devoted to a particular case of constructive algebraic topology, without
using its terminology. The authors describe there in detail an explicit process to
connect the chain complex C∗K(π, n) to a chain complex of finite type which they
call A(π, n), claiming the last one is more perspicuous, see the second paragraph
of the Introduction.

No mathematical definition for the last adjective. In fact the essential differ-
ence is the following: the chain complex A(π, n) is of finite type, so that the com-
putability of its homology groups is obvious, while this is often false for C∗K(π, n).
In the second paper [10] of the series, the authors start to exploit this prop-
erty and obtain an impressive collection of concrete results. The final result was
a simple algorithm obtained by Cartan [6] quickly giving the homology groups
H∗K(π, n) = H∗A(π, n).

These homology groups of course are interesting, but constructive algebraic
topology explains that if you do not have in your environment an equivalence
connecting K(π, n) and A(π, n), you are unable to use these groups to compute
for example homotopy groups in the general case. You understand in a sense the
first paper [9] is finally more important than the next ones, for this paper explicitly
describes such a connection. The most perspicuous object is neither K(π, n) nor
A(π, n), it is the equivalence ε : C∗(K(π, n))⇐⇐⇒⇒ A∗(π, n).

6 Conclusion.

The example used in the present paper around loop spaces is much more difficult
than the example of the effective homology of K(π, n), also covered by the Kenzo
program. A loop space has an inevitable non-commutative nature, while on the
contrary the Eilenberg-MacLane spaces K(π, n) are commutative. The equiva-
lence9 C∗(Ω

n(X))⇐⇐⇒⇒ Cobarn(X) was obtained for the first time in 1988 in the
Spanish thesis of Julio Rubio [16], using a terrible computational process. The
basic perturbation lemma allowed the same author in a 1991 French thesis [17] to

9The Cobar construction is dual of the A(π, n) construction of Eilenberg-MacLane, nowadays
called the Bar construction. This apparent “duality” is terribly misleading: a simple direct recur-
sive process defines Barn−1(X) 7→ Barn(X), while it is impossible to have such a correspondance
to define Cobarn(X); the last one can be obtained only through the whole information contained
in (Ωn−1(X))EH , see Diagram 11 where you replace EC∗,6 by Cobarn(X) and the line XEH

5 by
(Ωn−1(X))EH , in particular EC∗,5 by Cobarn−1(X).
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obtain a much more convenient version of the same result. This version was im-
mediately concretely implemented on computers, allowing us to obtain homology
groups then otherwise unreachable. It so happens the same groups twenty years
later remain otherwise unreachable.

It is often mentionned there does not exist any reason to be interested by the
numerical values of homology groups of loop spaces. Sure, the main interest in
these calculations in fact is in the theoretical study leading to a theoretical algo-
rithm, efficient enough to lead in turn to concrete implementations, the standard
test. Remember an algorithm is a mathematical object as respectable as a spec-
tral sequence, a coherent sheave or a modular function. By the way, who knows
significant applications ot the numerical values of the homotopy groups of spheres?
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